CIFellows 2020-2021 Computing Innovation Fellows # Brianna B. Posadas # Virginia Tech Socially Responsible AI Assurance in Precision Agriculture for Farmers and Policymakers # Overview - Currently, there are less than 10 studies of Al assurance in agriculture. Of these studies, few test their systems with agricultural experts; none test their systems with agricultural workers. - This is significant because as agriculture becomes more automated and technologically advanced, the end users who need to understand the "black box" of Al system are overwhelmingly not ML experts. - Having this "black box" makes it difficult for agricultural workers to trust AI systems and makes it difficult for policymakers to protect the interests of agricultural stakeholders. - recommendations for more accessible XAI agricultural systems including utilizing participatory design, designing for different end users, and having programmers be transparent and upfront about data use and privacy. ## Background - As one solution to feeding a growing population with finite resources, some farmers, researchers, and Agricultural Technology Providers (ATPs) have turned to Precision Agriculture (PA). - PA is the practice of mapping out precise input applications to maximize the yield. - In order to implement the machine learning algorithms for PA on a larger, industrial scale, Agricultural Technology Providers (ATPs) collect input and output data from farmers to build prescription maps which farmers can program farm equipment to follow. - To create trusted PA systems, ATPs will need to rely on transparency. - Addressing the lack of transparency in PA systems will require developing explainable AI (XAI) systems. ## **Current Methods** | Author | System | Test Conditions | End Users | Models/Algorithms | Results | |---------------------------------|---|--|---|--|--| | (Rojo et
al., 2021) | AHMoSe | choosing ML
model to predict
grape quality | viticulturalists | knowledge-based
fuzzy inference
system | viticulutralists us-
ing AHMoSe were
able to select a
model with bet-
ter performance
than an AutoML
system did | | (Gandhi
et al.,
2021) | N/A | simulating crop
yield for cotton,
wheat, paddy,
barley, and maize
using tempera-
ture, soil mois-
ture, humidity,
nitrogen, phos-
phorous and soil
type | not specified | fuzzy-rule based
system | the predicted ideal crop conditions and soil types for maximum yield were comparable to conditions provided by the ministry of agriculture and farmers welfare | | (Tsakiridis
et al.,
2020) | Vital | replacing legacy
technologies: a
set of enviromen-
tal sensors in lake
Koronia | not specified | fuzzy-rule based
system | integration suc-
cessful | | (Tsakiridis
et al.,
2020) | Vital | precision irriga-
tion for young
olive tree orchard | agronomists | fuzzy-rule based
system | using Vital with an expert was not as effective at conserving water as using Vital alone | | (Tsakiridis
et al.,
2019) | DECO₃RUM | LUCAS topsoil
database | unspecified ex-
perts | Mamdani Fuzzy
Rule-based Sys-
tem | DECO ₃ RUM
statistically out-
performed global
models | | (Tsakiridis
et al.,
2017) | DECO₃RUM | to predict soil
properties in sam-
ples from Cen-
tral Macedonia,
Greece | unspecified ex-
perts | Mamdani Fuzzy
Rule-based Sys-
tem | DECO ₃ RUM statistically outperformed the Partial Least Squares Regression algorithm | | (Batarseh
& Yang,
2017) | Intelligent Fed-
eral Data Man-
agement Tool,
Intelligent Federal
Math Engine, and
Validation Engine | suite of engines
and tools at the
US Department
of Agriculture
to manage, val-
idate, calculate
and stream data | federal analysts
and agricultural
researchers | knowledge-based
system and data
mining methods | 57% of analysts
gave the system
positive feedback | - The study of Al Assurance is a newer development for the agricultural field. - Overall, the studies were tested by the researchers themselves or unspecified experts. - However, in agriculture, we need to be cognizant that the end-users of these systems are not only the original researchers, but also the grower or agricultural worker. ## Recommendations/Further Work #### Rubric for XAI systems - Does the XAI tool clearly identify its target audience and their expectations for the tool? - Is the presentation of explanations sufficient for the target audience to gain insight and improve upon their model? - Does the XAI tool provide a variety of types of explanations? ### XAI for Agricultural End Users - Help users understand Al's capabilities - Be transparent about data and privacy - Recognize that many recommendations are high stakes - Leverage existing trusted resources #### Farmer-Centered Al Assurance System - Common hardware and data constraints - Build for diverse literacies and multiple languages - Co-design with smallholder farmers and intermediaries